JEE-MAIN EXAMINATION – JANUARY 2025

(HELD ON WEDNESDAY 29th JANUARY 2025)

CHEMISTRY

SECTION-A

51. Total number of nucleophiles from the following is :-

NH₃, PhSH, $(H_3C)_2S$, $H_2C=CH_2$, OH, H_3O^{\oplus} , (CH₃)₂ CO, \geq NCH₃

- (1) 5 (2) 4
- (3) 7 (4) 6

Ans. (1)

Sol. Total five nucleophiles are present

NH₃, PhSH, (H₃C)₂S, CH₂=CH₂, OH

52. The standard reduction potential values of some of the p-block ions are given below. Predict the one with the strongest oxidising capacity.

(1)
$$E_{Sn^{4+}/Sn^{2+}}^{\odot} = +1.15V$$
 (2) $E_{Tl^{3+}/Tl}^{\odot} = +1.26V$
(3) $E_{Al^{3+}/Al}^{\odot} = -1.66V$ (4) $E_{Pb^{4+}/Pb^{2+}}^{\odot} = +1.67V$

Ans. (4)

- **Sol.** Standard reduction potential value (+ve) increases oxidising capacity increases.
- **53.** The molar conductivity of a weak electrolyte when plotted against the square root of its concentration, which of the following is expected to be observed?
 - (1) A small decrease in molar conductivity is observed at infinite dilution.
 - (2) A small increase in molar conductivity is observed at infinite dilution.
 - (3) Molar conductivity increases sharply with increase in concentration.
 - (4) Molar conductivity decreases sharply with increase in concentration.

TIME: 9:00 AM TO 12:00 NOON

TEST PAPER WITH SOLUTION

54. At temperature T, compound $AB_{2(g)}$ dissociates

as $AB_{2(g)} \rightleftharpoons AB_{(g)} + \frac{1}{2}B_{2(g)}$ having degree of

dissociation x (small compared to unity). The correct expression for x in terms of K_p and p is

1

(1)
$$\sqrt[3]{\frac{2K_{p}}{p}}$$
 (2) $\sqrt[4]{\frac{2K_{p}}{p}}$
(3) $\sqrt[3]{\frac{2K_{p}^{2}}{p}}$ (4) $\sqrt{K_{p}}$

Ans. (3)

Sol.
$$AB_{2(g)} \rightleftharpoons AB_{(g)} + \frac{1}{2}B_{2(g)}$$

 $t_{eq.} \frac{(1-x)}{1+\frac{x}{2}}P \frac{xP}{1+\frac{x}{2}} \frac{\left(\frac{x}{2}\right)P}{1+\frac{x}{2}}$
 $\Rightarrow x << 1 \Rightarrow 1+\frac{x}{2} \simeq 1 \text{ and } 1-x \simeq$
 $\Rightarrow k_{P} = \frac{\left(xp\right) \cdot \left(\frac{xp}{2}\right)^{\frac{1}{2}}}{P}$
 $\Rightarrow k_{P}^{2} = x^{2} \cdot \frac{xP}{2}$
 $x = \sqrt[3]{\frac{2k_{P}^{2}}{P}}$

55. Match List-I with List-II.

	List-I		List-II	
	(Structure)		(IUPAC Name)	
(A)	H ₃ C-CH ₂ -CH-CH ₂ -CH-C ₂ H ₅ I I C ₂ H ₅ CH ₃	(I)	4-Methylpent-1- ene	
(B)	(CH ₃) ₂ C (C ₃ H ₇) ₂	(II)	3-Ethyl-5- methylheptane	
(C)	\checkmark	(III)	4,4- Dimethylheptane	
(D)	$\bigwedge $	(IV)	2-Methyl-1,3- pentadiene	

	Choose the correct answer from the options given
	below:
	(1) (A)-(III), (B)-(II), (C)-(IV), (D)-(I)
	(2) (A)-(III), (B)-(II), (C)-(I), (D)-(IV)
	(3) (A)-(II), (B)-(III), (C)-(IV), (D)-(I)
	(4) (A)-(II), (B)-(III), (C)-(I), (D)-(IV)
Ans.	(3)
Sol.	(A) $\operatorname{CH}_{3-\operatorname{CH}_{2}-\operatorname{CH}_{2}-\operatorname{CH}_{2}-\operatorname{CH}_{2}-\operatorname{CH}_{2}-\operatorname{CH}_{2}-\operatorname{CH}_{2}-\operatorname{CH}_{3}-\operatorname$
	3-Ethyl-5-methylheptane
	(B) $(CH_3)_2C (C_3H_7)_2$
	CH_3 CH_3 -C-CH ₂ -CH ₂ -CH ₂ -CH ₃ 4, 4-Dimethylheptane I_5 6 7 CH_2 -CH ₂ -CH ₃

- (C) $\frac{2}{1}$ $\frac{3}{3}$ $\frac{4}{5}$
 - 2-Methyl-1, 3-pentadiene
- (D) $\frac{2}{1}$ $\frac{3}{5}$

4-Methylpent-1-ene

- **56.** Choose the **correct** statements.
 - (A) Weight of a substance is the amount of matter present in it.
 - (B) Mass is the force exerted by gravity on an object.
 - (C) Volume is the amount of space occupied by a substance.
 - (D) Temperatures below 0°C are possible in Celsius scale, but in Kelvin scale negative temperature is not possible.
 - (E) Precision refers to the closeness of various measurements for the same quantity.
 - (1) (B), (C) and (D) Only
 - (2) (A), (B) and (C) Only
 - (3) (A), (D) and (E) Only
 - (4) (C), (D) and (E) Only

Ans. (4)

Sol. Theory based

57. The correct increasing order of stability of the complexes based on Δ_o value is :

	(I) $[Mn(CN)_6]^{3-}$	(II) $[Co(CN)_6]^{4-}$
	(III) $[Fe(CN)_6]^{4-}$	$(IV) [Fe(CN)_6]^{3-}$
	(1) II < III < I < IV	(2) $IV < III < II < I$
	(3) I < II < IV < III	(4) $III < II < IV < I$
Ans.	(3)	
Sol.	(I) $[Mn(CN)_6]^{3-}$	$-1.6 \Delta_o$
	(II) $[Co(CN)_6]^{4-}$	$-1.8 \Delta_{o}$
	(III) $[Fe(CN)_6]^{4-}$	$-2.4 \Delta_{o}$
	$(IV) [Fe(CN)_6]^{3-}$	$-2.0 \Delta_{o}$
	I < II < IV < III	

58. Match List-I with List-II.

List-I (Complex)		List-II (Hybridisation & Magnetic characters)	
(A)	$\left[\mathrm{MnBr}_4\right]^{2-}$	(I)	d ² sp ³ & diamagnetic
(B)	[FeF ₆] ³⁻	(II)	sp ³ d ² & paramagnetic
(C)	$[Co(C_2O_4)_3]^{3-}$	(III)	sp ³ & diamagnetic
(D)	[Ni(CO) ₄]	(IV)	sp ³ & paramagnetic

Choose the **correct** answer from the options given below :

- (1) (A)-(III), (B)-(II), (C)-(I), (D)-(IV)
- (2) (A)-(III), (B)-(I), (C)-(II), (D)-(IV)
- (3) (A)-(IV), (B)-(I), (C)-(II), (D)-(III)
- (4) (A)-(IV), (B)-(II), (C)-(I), (D)-(III)

Ans. (4)

Sol. (A) $[MnBr_4]^{2-}$

 $Mn^{+2} \Longrightarrow [Ar] 3d^5$

In presence of ligand field

 \Rightarrow sp³ hybridization, paramagnetic in nature

 \Rightarrow sp³ hybridization, diamagnetic in nature

59. In the following substitution reaction :

$$\bigcup_{NO_2}^{Br} \xrightarrow{C_2H_5ONa}_{Product} P$$

Product 'P' formed is :

Ans. (1)

Sol. It is an example of nucleophillic Aromatic substitution reaction.

60. For a Mg | Mg²⁺ (aq) || Ag⁺(aq) | Ag the correct Nernst Equation is :

(1)
$$E_{cell} = E_{cell}^{o} - \frac{RT}{2F} ln \frac{[Ag^{+}]}{[Mg^{2+}]}$$

(2) $E_{cell} = E_{cell}^{o} + \frac{RT}{2F} ln \frac{[Ag^{+}]^{2}}{[Mg^{2+}]}$
(3) $E_{cell} = E_{cell}^{o} - \frac{RT}{2F} ln \frac{[Mg^{2+}]}{[Ag^{+}]}$
(4) $E_{cell} = E_{cell}^{o} - \frac{RT}{2F} ln \frac{[Ag^{+}]^{2}}{[Mg^{2+}]}$

Ans. (2)

Sol. According to Nernst equation :-

$$\mathbf{E} = \mathbf{E}^{\circ} - \frac{\mathbf{RT}}{\mathbf{nF}} \ln \mathbf{Q}.$$

Cell reaction :-

$$Mg_{(s)} + 2Ag^+_{(aq)} \rightleftharpoons 2Ag_{(s)} + Mg^{+2}_{(aq)}$$

$$\Rightarrow \mathbf{Q} = \frac{\left[\mathbf{Mg}^{+2}\right]}{\left[\mathbf{Ag}^{+}\right]^{2}}$$

$$\Rightarrow E = E_{Cell}^{o} - \frac{RT}{2F} \ln \left[\frac{\left[Mg^{+2} \right]}{\left[Ag^{+} \right]^{2}} \right]$$

- 61. The correct option with order of melting points of the pairs (Mn, Fe), (Tc, Ru) and (Re, Os) is :
 - (1) Fe \leq Mn, Ru \leq Tc and Re \leq Os
 - (2) Mn < Fe, Tc < Ru and Re < Os
 - (3) Mn < Fe, Tc < Ru and Os < Re
 - (4) Fe \leq Mn, Ru \leq Tc and Os \leq Re
- Ans. (3)
- Sol. M.P. \Rightarrow Mn < Fe, Tc < Ru, Os < Re NCERT based
- 62. 1.24 g of AX_2 (molar mass 124 g mol⁻¹) is dissolved in 1 kg of water to form a solution with boiling point of 100.0156°C, while 25.4 g of AY_2 (molar mass 250 g mol⁻¹) in 2 kg of water constitutes a solution with a boiling point of 100.0260°C.

 $K_{b}(H_{2}O) = 0.52 \text{ K kg mol}^{-1}$

- Which of the following is **correct** ?
- (1) AX_2 and AY_2 (both) are completely unionised.
- (2) AX_2 and AY_2 (both) are fully ionised.
- (3) AX₂ is completely unionised while AY₂ is fully ionised.
- (4) AX₂ is fully ionised while AY₂ is completely unionised.

Ans. (4)

Sol. For $AX_2 := \Delta T_b = K_b \times m \times i$

 $0.0156 = 0.52 \times \frac{0.01}{1} \times i_{AX_2}$ $\Rightarrow i_{AX_2} = 3 \Rightarrow \text{complete ionisation}$ For AY₂:- $\Delta T_b = K_b \times m \times i$ $0.026 = 0.52 \times 0.0508 \times i_{AY_2}$

 $\Rightarrow i_{AY_2} \simeq 1$: complete unionisation

63. 500 J of energy is transferred as heat to 0.5 mol of Argon gas at 298 K and 1.00 atm. The final temperature and the change in internal energy respectively are :

Given : $R = 8.3 \text{ J K}^{-1} \text{ mol}^{-1}$

(1) 348 K and 300 J	(2) 378 K and 300 J
(3) 368 K and 500 J	(4) 378 K and 500 J

NTA Ans. (4)

Sol. $q_{p=}n \times c_{p} \times \Delta T$ $\Rightarrow 500 = 0.5 \times \frac{5}{2} \times 8.3 (T_{f}-298)$ $\Rightarrow T_{f} \simeq 346.2K$ $\frac{\Delta H}{\Delta U} = \frac{C_{p}}{C_{v}} = \left(\frac{5}{3}\right)$ $\Rightarrow \Delta U = \frac{3}{5} \times 500 = 300 \text{ J}$ 64. The reaction $A_2 + B_2 \rightarrow 2$ AB follows the mechanism

$$A_2 \xrightarrow{k_1} A + A(fast)$$

 $A + B_2 \xrightarrow{K_2} AB + B (slow)$

 $A + B \rightarrow AB$ (fast)

The overall order of the reaction is :

Ans. (1)

Sol. rate = $k_2[A][B_2]$ (1)

$$\left(\frac{\mathbf{k}_{1}}{\mathbf{k}_{-1}}\right) = \left(\frac{\left[\mathbf{A}\right]^{2}}{\left[\mathbf{A}_{2}\right]}\right)$$
$$\Rightarrow \left[\mathbf{A}\right] = \sqrt{\frac{\mathbf{k}_{1}}{\mathbf{k}_{-1}}} \cdot \sqrt{\left[\mathbf{A}_{2}\right]}$$

Substituting in (1); we get

Rate =
$$k_2 \sqrt{\frac{k_1}{k_{-1}}} \cdot [A_2]^{\frac{1}{2}} \cdot [B_2]$$

∴ order = $\left(\frac{3}{2}\right) = 1.5$

65. If a₀ is denoted as the Bohr radius of hydrogen atom, then what is the de-Broglie wavelength (λ) of the electron present in the second orbit of hydrogen atom ? [n : any integer]

(1)
$$\frac{2a_0}{n\pi}$$
 (2) $\frac{8\pi a_0}{n}$

(3)
$$\frac{4\pi a_0}{n}$$
 (4) $\frac{4n}{\pi a_0}$

Ans. (2)

Sol.
$$2\pi r_n = n\lambda$$

 $2\pi (4a_0) = n\lambda$
 $= \lambda = \frac{8\pi a_0}{n}$

An element 'E' has the ionisation enthalpy value of 67. 374 kJ mol⁻¹. 'E' reacts with elements A, B, C and D with electron gain enthalpy values of -328, -349, -325 and -295 kJ mol⁻¹, respectively.

> The correct order of the products EA, EB, EC and ED in terms of ionic character is :

- (1) EB > EA > EC > ED
- (2) ED > EC > EA > EB
- (3) EA > EB > EC > ED
- (4) ED > EC > EB > EA

Ans. (1)

Sol. Difference between I.E. & E.G.E increases, ionic character increases.

Match List – I with List . II 68.

iviater.		ι 11.	
	List – I		List – II
	(Carbohydrate)	(Linkage
			Source)
(A)	Amylose	(I)	β -C ₁ -C ₄ , plant
(B)	Cellulose	(II)	α -C ₁ -C ₄ , animal
(C)	Glycogen	(III)	α -C ₁ -C ₄ ,
			α -C ₁ -C ₆ , plant
(D)	Amylopectin	(IV)	α -C ₁ -C ₄ , plant
Choos	se the correct ans	wer forn	n the options given
below	:		
(1) (A	.)-(III), (B)-(II), (C	C)-(I), (D)-(IV)

(2) (A)-(IV), (B)-(I), (C)-(II), (D)-(III)

- (3) (A)-(II), (B)-(III), (C)-(I), (D)-(IV)
- (4) (A)-(IV), (B)-(I), (C)-(III), (D)-(II)

Ans. (2)

- Informative Sol.
- 69. The steam volatile compounds among the following are :

Choose the **correct** answer from the options given below:

- (1) (B) and (D) only (2) (A) and (C) only
- (3) (A) and (B) only
 - (4) (A),(B) and (C) only

Ans. (3)

are steam volatile due to intramolecular hydrogen bonding.

70. Given below are two statements :

> Statement (I) : The radii of isoelectronic species increases in the order.

$$Mg^{2+} < Na^{+} < F^{-} < O^{2-}$$

Statement (II) : The magnitude of electron gain enthalpy of halogen decreases in the order.

Cl > F > Br > I

In the light of the above statements, choose the **most appropriate answer** from the options given below :

- (1) Statement I is incorrect but Statement II is correct
- (2) Both Statement I and Statement II are incorrect
- (3) Statement I is correct but Statement II is incorrect
- (4) Both Statement I and Statement II are correct

Ans. (4)

- **Sol.** (i) For isoelectronic species –ve charge increases, radii increases.
 - (ii) Magnitude of E.G.E : Cl > F > Br > I

SECTION-B

71. Given below are some nitrogen containing compounds.

Each of them is treated with HCl separately. 1.0 g of the most basic compound will consume _____mg of HCl.

(Given molar mass in g mol⁻¹ C:12, H : 1, O : 16, Cl : 35.5)

Ans. (341)

Sol. Benzyl Amine is most basic due to localised lone pair.

(Benzyl Amine)

Mole of benzyl Amine $\Rightarrow \frac{1}{107} = 0.00934$ mole

1 Mole of Benzyl amine consumed 1 mole of HCl So, Mole of HCl consumed $\rightarrow 0.00934$ mole Mass of HCl consumed $\rightarrow 0.00934 \times \text{molar mass}$ of HCl = 0.00934×36.5

= 341 mg

- 72. The molar mass of the water insoluble product formed from the fusion of chromite ore $(FeCr_2O_4)$ with Na₂CO₃ in presence of O₂ is _____g mol⁻¹.
- Ans. (160)
- Sol. $4\text{FeCr}_2\text{O}_4 + 8\text{Na}_2\text{CO}_3 + 7\text{O}_2 \rightarrow 8\text{Na}_2\text{CrO}_4 + 2\text{Fe}_2\text{O}_3 + 8\text{CO}_2$ Fe₂O₃ is water insoluble, so its molar mass $\Rightarrow [2 \times 56 + 3 \times 16] \Rightarrow 160 \text{ g/mol}$
- 73. The sum of sigma (σ) and pi(π) bonds in Hex-1,3-dien-5-yne is .

Number of σ bond = 11

Number of π bond = 4

$$\sigma+\pi=11+4=15$$

74. If A_2B is 30% ionised in an aqueous solution, then the value of van't Hoff factor (i) is _____×10^{-1}.

Ans. (16)

Sol.
$$A_2B \rightarrow 2A^+ + B^{-2}$$
; y = 3
 $\alpha = 0.3$

$$i = 1 + (y - 1)\alpha$$

= 1 + (3 - 1) (0.3) = 1.6 = 16 × 10⁻¹

75. OH

$$OH \xrightarrow{CrO_3} P \xrightarrow{OH} OH \xrightarrow{OH} OH$$

 $H^+ Q \xrightarrow{I} OH_3Mg I$
 $D \text{ NaBH}_4 \xrightarrow{I} OH_3O^{(+)} H_3O^{(+)}$

0.1 mole of compound 'S' will weigh _____g. (Given molar mass in g mol⁻¹ C:12, H:1, O:16)

Sol.

0.1 mole of compound (S) weight in gm = $0.1 \times \text{molar mass of compound (S)}$ = $0.1 \times 130 = 13 \text{ gm}$