	JEE-MAIN EXAMINATION - JANUARY 2025					
(HE	(HELD ON WEDNESDAY 22 nd JANUARY 2025)		TIME: 9:00 AM TO 12:00 NOON			
	CHEMISTRY		TEST PAPER WITH SOLUTIONS			
51.	SECTION-AA solution of aluminium chloride is electrolysedfor 30 minutes using a current of 2A. The amountof the aluminium deposited at the cathode is[Given : molar mass of aluminium and chlorine are27 g mol ⁻¹ and 35.5 g mol ⁻¹ respectively, Faradayconstant = 96500 C mol ⁻¹].(1) 1.660 g(2) 1.007 g(3) 0.336 g(4) 0.441 g	Sol.	$\begin{array}{c} CH_{3}-CH-CH=CH-CH_{3}\\ OH\\ It has 4 stereoisomers \begin{bmatrix} R cis & R trans\\ S cis & S trans \end{bmatrix}\\ Which of the following electronegativity order is incorrect?\\ (1) Al < Mg < B < N (2) Al < Si < C < N\\ (3) Mg < Be < B < N (4) S < Cl < O < F\\ \end{array}$			
Ans.	(3)	Ans.				
Sol.	gm equivalent of Al deposited = $\frac{\text{It}}{96500}$ $\frac{\text{w}}{27} \times 3 = \frac{2 \times 30 \times 60}{96500}$	Sol.	Li Be B C N O F (E.N.)= 1 1.5 2 2.5 3 3.5 4.0			
52.	w = 0.336 g, Which of the following statement is not true for radioactive decay ?		On pauling scale			
	 (1) Amount of radioactive substance remained after three half lives is ¹/₈ th of original amount. (2) Decay constant does not depend upon temperature. 	(E.N 55.	Na Mg Al Si P S Cl A_{0} = 0.9 1.2 1.5 1.8 2.1 2.5 3.0 Correct order Mg < Al < B < N Lanthanoid ions with 4f ⁷ configuration are :			
	 (3) Decay constant increases with increase in temperature. (4) Half life is ln 2 times of 1/rate constant. 		 (A) Eu²⁺ (B) Gd³⁺ (C) Eu³⁺ (D) Tb³⁺ (E) Sm²⁺ Choose the correct answer from the options given below : (1) (A) and (B) only (2) (A) and (D) only 			
Ans. Sol.	Decay constant is independent of temperature.		(1) (A) and (B) only (2) (A) and (D) only (3) (B) and (E) only (4) (B) and (C) only			
53. Ans.	How many different stereoisomers are possible for the given molecule ? $CH_3 - CH - CH = CH - CH_3$ OH (1) 3 (2) 1 (3) 2 (4) 4	Ans. Sol.	(1) $_{63}Eu^{2+} - [Xe] 4f^{7}6s^{0}$ $_{64}Gd^{3+} - [Xe] 4f^{7} 5d^{0}6s^{0}$ $_{63}Eu^{3+} - [Xe] 4f^{6} 6s^{0}$ $_{65}Tb^{3+} - [Xe] 4f^{8} 6s^{0}$ $_{62}Sm^{2+} - [Xe] 4f^{6} 6s^{0}$ $Eu^{2+} \& Gd^{3+}$			

```
56. Match List-I with List-II
```

List-I		List-II	
(A)	$Al^{3+} < Mg^{2+} < Na^+ < F^-$	(I)	Ionisation
			Enthalpy
(B)	B < C < O < N	(II)	Metallic
			character
(C)	B < Al < Mg < K	(III)	Electronegativity
(D)	Si < P < S < Cl	(IV)	Ionic radii

Choose the **correct** answer from the options given below :

(1) A-IV, B-I, C-III, D-II (2) A-II, B-III, C-IV, D-I (3) A-IV, B-I, C-II, D-III (4) A-III, B-IV, C-II, D-I

Ans. (3)

Sol. Ionic radii $-Al^{3+} < Mg^{2+} < Na^{+} < F^{-}$

Ionisation energy -B < C < O < N

Metallic character -B < Al < Mg < K

Electron negativity -Si < P < S < Cl

57. Which of the following acids is a vitamin ?
(1) Adipic acid
(2) Aspartic acid
(3) Ascorbic acid
(4) Saccharic acid

Ans. (3)

- Sol. Vitamin-C is Ascorbic acid.
- 58. A liquid when kept inside a thermally insulated closed vessel at 25°C was mechanically stirred from outside. What will be the correct option for the following thermodynamic parameters ?
 - (1) $\Delta U > 0$, q = 0, w > 0 (2) $\Delta U = 0$, q = 0, w = 0
 - (3) $\Delta U < 0, q = 0, w > 0$ (4) $\Delta U = 0, q < 0, w > 0$

Ans. (1)

Sol. Thermally insulated $\Rightarrow q = 0$

from Ist law

 $\Delta \mathbf{U} = \mathbf{q} + \mathbf{w}$

 $\Delta U = w$

 $w > 0, \Delta U > 0$

59. Radius of the first excited state of Helium ion is given as :

given as :

 $a_0 \rightarrow$ radius of first stationary state of hydrogen atom.

(1)
$$r = \frac{a_0}{2}$$
 (2) $r = \frac{a_0}{4}$ (3) $r = 4a_0$ (4) $r = 2a_0$

Ans. (4)

Sol. $r = a_0 \frac{n^2}{Z} = a_0 \cdot \frac{(2)^2}{2} = 2a_0.$

60. Given below are two statements :

Statement I : $CH_3 - O - CH_2 - CI$ will undergo S_N1 reaction though it is a primary halide.

Statement II :
$$CH_3 - C - CH_2 - Cl$$
 will not

undergo $S_N 2$ reaction very easily though it is a primary halide.

In the light of the above statements, choose the **most appropriate answer** from the options given below :

(1) Statement I is incorrect but Statement II is correct.

(2) Both Statement I and Statement II are incorrect

(3) Statement I is correct but Statement II is incorrect

(4) Both **Statement I** and **Statement II** are correct.

Ans. (4)

Sol. CH_3 -O- CH_2 -Cl will undergo S_N1 mechanism

because $CH_3 - O - CH_2$ is highly stable.

 $\begin{array}{c} CH_3 \\ | \\ H_3C-C-C+CH_2-C| \\ | \\ CH_3 \end{array} \quad (Neopentyl chloride) will \\ undergo S_N2 mechanism at \\ a slow rate because it's \\ sterically crowded \end{array}$

61. Given below are two statements :Statement I : One mole of propyne reacts with excess of sodium to liberate half a mole of H₂ gas.

Statement II : Four g of propyne reacts with $NaNH_2$ to liberate NH_3 gas which occupies 224 mL at STP.

In the light of the above statements, choose the **most appropriate answer** from the options given below:

(1) Statement I is correct but Statement II is incorrect.

(2) Both Statement I and Statement II are incorrect
(3) Statement I is incorrect but Statement II is

(3) Statement I is incorrect out Statement II is correct

(4) Both Statement I and Statement II are correct.

Ans. (1)

Sol.

$$CH_{3}-C \equiv CH + Na_{(excess)} \rightarrow CH_{3} - C \equiv \overline{C} Na + \frac{1}{2}H_{2} \uparrow$$

$$\frac{1}{2}moleH_{2}$$

$$CH_3 - C \equiv CH + NaNH_2 \rightarrow CH_3C \equiv \overline{C}Na + NH_3$$

4 gm

$$\frac{4}{40} = 0.1$$
mole
$$\frac{0.1$$
mole}{2240 mole}

Statement I is correct but Statement II is incorrect

62. A vessel at 1000 K contains CO_2 with a pressure of 0.5 atm. Some of CO_2 is converted into CO on addition of graphite. If total pressure at equilibrium is 0.8 atm, then K_P is :

(1) 0.18 atm (2) 1.8 atm (3) 0.3 atm (4) 3 atm.

Sol.
$$CO_2(g) + C(s) \implies 2CO(g)$$

 $0.5 \qquad - \\ 0.5-x \qquad 2x$
 $P_{total} = 0.5 + x = 0.8$
 $x = 0.3$
 $K_p = \frac{(0.6)^2}{0.2} = 1.8$

- **63.** The IUPAC name of the following compound is :
 - COOH COOCH₃ I CH₃-CH-CH₂-CH₂-CH-CH₃
 - (1) 2-Carboxy-5-methoxycarbonylhexane.
 - (2) Methyl-6-carboxy-2,5-dimethylhexanoate.
 - (3) Methyl-5-carboxy-2-methylhexanoate.
 - (4) 6-Methoxycarbonyl-2,5-dimethylhexanoic acid.

NTA Ans. (4)

6.1	$\stackrel{1}{CO_2H}$ $O = C - OCH_3$				
Sol.	CH ₃ -CH-CH ₂ -CH-CH ₃				
	² ³ ⁴ ⁵ ⁶ 5-Methoxycarbonly-2-methylhexanoic acid				
64.	Which of the following electrolyte can be sued to				
	obtain H ₂ S ₂ O ₈ by the process of electrolysis?				
	(1) Dilute solution of sodium sulphate				
	(2) Dilute solution of sulphuric acid				
	(3) Concentrated solution of sulphuric acid				
	(4) Acidified dilute solution of sodium sulphate.				
Ans.	(3)				
Sol.	Theory based.				
	At anode :				
	$2\mathrm{HSO}_4^- \to \mathrm{H}_2\mathrm{S}_2\mathrm{O}_8 + 2\mathrm{e}^-$				
65.	The compounds which give positive Fehling's test				
	are : O				
	(A) CHO (B) CH ₃				
	(C) HOCH ₂ –CO–(CHOH) ₃ –CH ₂ –OH				
	(D) CH ₃ -C-H (E) CHO				

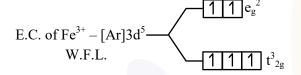
Choose the **CORRECT** answer from the options given below :

(1) (A),(C) and (D) Only (2) (A),(D) and (E) Only

Ans. (3)

Sol.
$$CH_{3}CH = O$$
, $PhCH_{2}CH = O$,
 (D)
 $HOCH_{2} - C - (CHOH)_{3} - CH_{2}OH$
 $||$
 O
 (E)

All gives positive Fehling test


66. In which of the following complexes the CFSE, Δ_0

will be equal to zero?

(1) $[Fe(NH_3)_6]Br_2$ (2) $[Fe(en)_3]Cl_3$ (3) $K_4[Fe(CN)_6]$ (4) $K_3[Fe(SCN)_6]$

Ans. (4)

Sol. For complex $K_3[Fe(SCN)_6]$

Calculation of CFSE

$$= (-0.4 \times 3 + 0.6 \times 2) \Delta_0$$

 $= 0 \Delta_0$

- **67.** Arrange the following solutions in order of their increasing boiling points.
 - (i) 10^{-4} M NaCl (ii) 10^{-4} M Urea (iii) 10^{-3} M NaCl (iv) 10^{-2} M NaCl (1) (ii) < (i) < (iii) < (iv) (2) (ii) < (i) \cong (iii) < (iv) (3) (i) < (ii) < (iii) < (iv) (4) (iv) < (iii) < (i) < (ii)

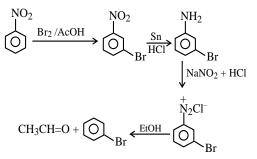
Ans. (1)

Sol. $\Delta T_b = i K_b \cdot m \cdot \infty i.C.$

where C = concentration

Options	i.C.
(i)	2×10^{-4}
(ii)	1×10^{-4}
(iii)	2×10^{-3}
(iv)	2×10^{-2}

B.P. order :


$$(ii) < (i) < (iii) < (iv)$$

68. The products formed in the following reaction sequence are :

Ans. (3)

$$NO_2$$
 (i) Br₂, AcOH
(ii) Sn, HCl
(iii) Sn, HCl
(iii) NaNO₂, HCl, 273 K
 $A + B$
(iv) C₂H₅OH
(1) OH
 OEt
 OEt
 OH
 (2) OEt
 OH
 (2) OEt
 OH
 (3) OH
 Br , CH_3 -CHO
 (4) OH
 Br , CH_3 -CHO

Sol.

- **69.** From the magnetic behaviour of [NiCl₄]^{2–} (paramagnetic) and [Ni(CO)₄] (diamagnetic), choose the correct geometry and oxidation state.
 - (1) $[NiCl_4]^{2-}$: Ni^{II} , square planar
 - [Ni(CO)₄] : Ni(0), square planar
 - (2) [NiCl₄]²⁻: Ni^{II}, tetrahedral
 - $[Ni(CO)_4] : Ni(0)$, tetrahedral
 - (3) $[NiCl_4]^{2-}$: Ni^{II}, tetrahedral
 - $[Ni(CO)_4]$: Ni^{II}, square planar
 - (4) $[NiCl_4]^{2-}$: Ni(0), tetrahedral
 - $[Ni(CO)_4]$: Ni(0), square planar

Ans. (2)

Sol. $[NiCl_4]^{2-}$

 $Ni^{+2} - [Ar] 3d^8 4s^0 \rightarrow sp^3$, Tetrahedral Number of unpaired electron = 2 paramagentic [Ni(CO)₄],

 $Ni(0) \rightarrow [Ar] 3d^{10} 4s^0$ (After rearrangement)

No unpaired electron

sp³, Tetrahedral, Diamagnetic

70. The **incorrect** statements regarding geometrical isomerism are :

(A) Propene shows geometrical isomerism.

(B) Trans isomer has identical atoms/groups on the opposite sides of the double bond.

(C) Cis-but-2-ene has higher dipole moment than trans-but-2-ene.

(D) 2-methylbut-2-ene shows two geometrical isomers.

(E) Trans-isomer has lower melting point that cis isomer.

Choose the CORRECT answer from the options given below :

(1) (A), (D) and (E) only (2) (C), (D) and (E) only
(3) (B) and (C) only (4) (A) and (E) only

Ans. (1)

Sol. (A) CH_3 -CH= CH_2 . GI is not possible

(B) Trans isomer has identical atoms/groups on the opposite side of double bond.

(C) \searrow (dipole moment only) (D) $\stackrel{H_3C-C=CH-CH_3}{\underset{CH_3}{\overset{I}{2}-methylbut-2-ene}}$ (does not show GI)

$$(E) \longrightarrow (Melting point)$$
SECTION-B

71. Some CO₂ gas was kept in a sealed container at a pressure of 1 atm and at 273 K. This entire amount of CO₂ gas was later passed through an aqueous solution of Ca(OH)₂. The excess unreacted Ca(OH)₂ was later neutralized with 0.1 M of 40 mL HCl. If the volume of the sealed container of CO₂ was x, then x is _____ cm³ (nearest integer).
[Given : The entire amount of CO₂(g) reacted with

exactly half the initial amount of $Ca(OH)_2$ present in the aqueous solution.]

Ans. (45)

Sol. Let moles of $CO_2 = n$

moles of $Ca(OH)_2$ total initially = 2n excess $Ca(OH)_2 = n$ gm equivalent of $Ca(OH)_2 =$ gm equivalent of HCl

$$n \times 2 = 0.1 \times \frac{40}{1000} \times 1$$
$$n = 2 \times 10^{-3}$$

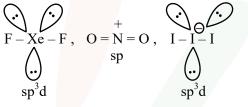
Volume of $CO_2 = 2 \times 10^{-3} \times 22400 = 44.8 \text{ cm}^3$

72. In Carius method for estimation of halogens, 180 mg of an organic compound produced 143.5 mg of AgCl. The percentage composition of chlorine in the compound is ______%. [Given : molar mass in g mol⁻¹ of Ag : 108, Cl = 35.5]

Ans. (20)

Sol.
$$n_{Cl} = n_{AgCl} = \frac{143.5 \times 10^{-3}}{143.5} = 10^{-3}$$

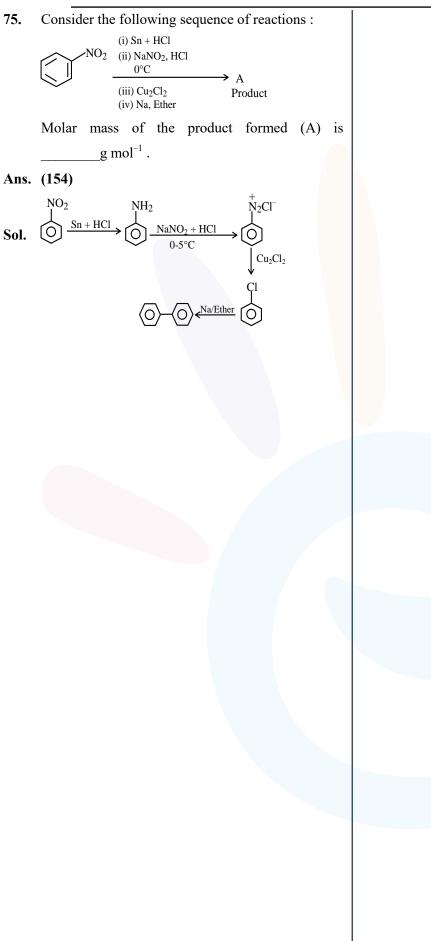
% $Cl = \frac{10^{-3} \times 35.5}{180 \times 10^{-3}} \times 100 = 19.72$


73. The number of molecules/ions that show linear geometry among the following is

SO₂, BeCl₂, CO₂, N₃⁻, NO₂, F₂O, XeF₂, NO₂⁺, I₃⁻, O₃

Ans. (6)

Sol. Linear species are


Cl - Be - Cl,
$$O = C = O, N^{-} = N^{+} = N$$

(sp) (sp) (sp)

 $74. \quad A \to B$

The molecule A changes into its isomeric form B by following a first order kinetics at a temperature of 1000 K. If the energy barrier with respect to reactant energy for such isomeric transformation is 191.48 kJ mol⁻¹ and the frequency factor is 10^{20} , the time required for 50%, molecules of A to become B is _____ picoseconds (nearest integer). [R = 8.314 J K⁻¹ mol⁻¹]

Sol.
$$t_{1/2} = \frac{0.693}{K}$$

 $K = Ae^{-Ea/RT}$
 $= 10^{20} \times e^{-\frac{191.48 \times 10^3}{8.314 \times 1000}}$
 $= 10^{20} \times e^{-23.031} = 10^{20} \times -e^{\ln 10 \times 10}$
 $= \frac{10^{20}}{10^{10}} = 10^{10} \text{ sec.}$
 $t_{1/2} = \frac{0.693}{10^{10}} = 6.93 \times 10^{-11}$
 $= 69.3 \times 10^{-12} \text{ sec.}$

